jueves, 26 de mayo de 2011

lunes, 1 de noviembre de 2010


Motores Valvematic (1.6 l y 1.8 l)

Valvematic viene a sumarse a la tecnología Dual VVT-i (sistema dual de sincronización variable e inteligente de las válvulas).


La tecnología Valvematic tiene como objetivo reducir el impacto medioambiental y a su vez, ofrecer el máximo placer de conducción mediante el aumento de la potencia y del par motor (las emisiones se han reducido entre un 10 y un 26% dependiendo de la motorización mientras que la potencia se ha incrementado entre un 3 y un 20%). Toyota aplica Valvematic a motores 1.6 l y 1.8 l y forma parte de las innovadoras tecnologías Toyota Optimal Drive.

La tecnología Valvematic de Toyota permite mejorar la eficiencia del combustible, la potencia, el par y la respuesta del motor, y reduce el nivel de emisiones de CO2 gracias al control simultáneo de la sincronización de las válvulas y de su apertura.

La optimización del nivel de apertura de las válvulas y de su sincronización permite la reducción de las pérdidas de bombeo en los momentos en que no se exige mucho al motor. La optimización de la sincronización de las válvulas produce un aumento significativo tanto de la eficiencia de combustible como de la potencia, sea cual sea el nivel de exigencia al motor.

Diversos elementos permiten mejorar el rendimiento del motor:

*

Mayor rigidez del equipo de potencia.
*

Mayor circularidad del diámetro del cilindro.
*

Bujía de encendido de larga duración.
*

Pistón ligero.
*

Dual VVT-i
*

Sistema de admisión con ACIS (sistema de inducción de control acústico).
*

Valvematic.

motor VVT-i


VVT-i (Válvulas inteligentes de Tiempo Variable)

La premiada tecnología VVT-i (Válvulas inteligentes de Tiempo Variable) de Toyota utiliza un sofisticado ordenador para modificar el tiempo de entrada de aire a las válvulas, respondiendo a las condiciones de la conducción y la carga del motor.

Se lorgra mediante el ajuste del intervalo de tiempo que va desde que la válvula de escape se cierra hasta que se abre la válvula de admisión. De este modo se cambian las características del motor para proporcionar un par instantáneo del motor, a lo largo de todo el recorrido de las revoluciones. Esto ofrece lo mejor de los dos mundos: potente aceleración y menores consumos de combustible. Además, una mejor quema de combustible a mayor temperatura deja muchas menos emisiones por el camino.
La premiada tecnología VVT-i (Válvulas inteligentes de Tiempo Variable) de Toyota utiliza un sofisticado ordenador para modificar el tiempo de entrada de aire a las válvulas, respondiendo a las condiciones de la conducción y la carga del motor.

Se logra mediante el ajuste del intervalo de tiempo que va desde que la válvula de escape se cierra hasta que se abre la válvula de admisión. De este modo se cambian las características del motor para proporcionar un par instantáneo del motor, a lo largo de todo el recorrido de las revoluciones. Esto ofrece lo mejor de los dos mundos: potente aceleración y menores consumos de combustible. Además, una mejor quema de combustible a mayor temperatura deja muchas menos emisiones por el camino.

sábado, 7 de noviembre de 2009

Sensores


MAP


Conocido también como MAP por sus siglas en inglés (Manifold Absolute Presion), este sensor se encuentra en la parte externa del motor después de la mariposa, presentándose en algunos casos integrado al calculador.

Su objetivo radica en proporcionar una señal proporcional a la presión existente en la tubería de admisión con respecto a la presión atmosférica, midiendo la presión absoluta existente en el colector de admisión.

Para ellos genera una señal que puede ser analógica o digital, reflejando la diferencia entre la presión en el interior del múltiple de admisión y la atmósfera.

Podemos encontrar dos diferentes tipos de sensores, por variación de presión y por variación de frecuencia. El funcionamiento del sensor MAP pro variación de presión esta basado en una resistencia variable accionada por el vacío creado por la admisión del cilindro.

Posee tres conexiones, una de ellas es la entrada de corriente que provee la alimentación al sistema, una conexión de masa y otra de salida. La conexión de masa se encuentra aproximadamente en el rango de los 0 a 0.08 volts, la tensión de entrada es generalmente de unos 5 volts mientras que la de salida varía entre los 0.6 y 2.8 volts. Esta última es la encargada de enviar la señal a la unidad de mando.

Los sensores por variación de frecuencia no pueden ser comprobados de la misma forma como en el caso de los de presión, si los testeamos siempre nos dará una tenstión de alrededor de los 3 volts (esto solo nos notificará que el sensor esta funcionando).

Estos sensores toman la presión barométrica además de la presión de la admisitón obteniendo la presión absoluta del resto de la presión barométrica y la presión creada por el vacío del cilindro.

Sensor de posición de la mariposa (TPS)


Este sensor es conocido también como TPS por sus siglas Throttle Position Sensor, está situado sobre la mariposa, y en algunos casos del sistema mono punto esta en el cuerpo (el cuerpo de la mariposa es llamado también como unidad central de inyección).

Su función radica en registrar la posición de la mariposa enviando la información hacia la unidad de control.

El tipo de sensor de mariposa más extendido en su uso es el denominado potenciómetro.

Consiste en una resistencia variable lineal alimentada con una tensión de 5 volts que varía la resistencia proporcionalmente con respecto al efecto causado por esa señal.

Detectando fallas en los TPS. Control de voltaje mínimo. Uno de los controles que podemos realizar es la medición de voltaje mínimo. Para esto con el sistema en contacto utilizamos un tester haciendo masa con el negativo del tester a la carrocería y conectando el positivo al cable de señal.

Control de voltaje máximo

Se realiza con el sistema en contacto y acelerador a fondo utilizando un tester obteniéndose en caso de correcto una tensión en el rango de la tensión de voltaje máxima segun el fabricante, generalmente entre 4 y 4.6 volts.

Barrido de la pista

El barrido de la pista se realiza con un tester preferentemente de aguja o con un osciloscopio debiéndose comprobar que la tensión se mantenga uniforme y sin ningún tipo de interrupción durante su ascenso. La tensión comienza con el voltaje minimo y en su función normal consiste en una suba hasta llegar al voltaje máximo, valor que depende según el fabricante.

Si no ejercemos ninguna acción sobre la mariposa entonces la señal estaría en 0 volts, con una acción total sobre ésta la señal sera del máximo de la tensión, por ejemplo 4.6 volts, con una aceleración media la tensión sería proporcional con respecto a la maxima, es decir 2.3 volts.

Generalmente tiene 3 terminales de conexión, o 4 cables si incluyen un switch destinado a la marcha lenta. Si tienen 3 cables el cursor recorre la pista pudiéndose conocer según la tensión dicha la posición del cursor.

Si posee switch para marcha lenta (4 terminales) el cuarto cable va conectado a masa cuando es detectada la mariposa en el rango de marcha lenta, que depende segun el fabricante y modelo (por ejemplo General Motors acostumbra situar este rango en 0.5 +/- 0.05 volts, mientras que bosh lo hace por ejemplo de 0.45 a 0.55 Volts).

Fallas frecuentes

Un problema causado por un TPS en mal estado es la pérdida del control de marcha lenta, quedando el motor acelerado o regulando en un régimen incorrectos.

La causa de esto es una modificación sufrida en la resistencia del TPS por efecto del calor producido por el motor, produciendo cambios violentos en el voltaje mínimo y haciendo que la unidad de control no reconozca la marcha lenta adecuadamente.

Esta falla es una de las mas comununes en los TPS, y se detecta mediante el cheuqeo del barrido explicado anteriormente.

En la figura a la derecha se muestra diferentes etapas en los estados de la presión, la mayor diferencia se produce en ralenti, disminuyendo esta presión al acelerar y luego una diferencia mínima con la mariposa totalmente abierta.

Sensor de oxígeno (Sonda LAMBDA)

Esta sonda mide el oxigeno de los gases de combustión con referencia al oxígeno atmosférico, gracias a esto la unidad de control puede regular con mayor precisión la cantidad de aire y combustible hasta en una relación 14,7 a 1, contribuyendo con su medición a una mejor utilización del combustible y a una combustión menos contaminante al medio ambiente gracias al control de los gases de escape que realiza.

Situada en el tubo de escape del auto se busca en su colocación la mejor posición para su funcionamiento cualquiera sea el régimen del motor. La temperatura óptima de funcionamiento de la sonda es alrededor de los 300° o más.

Un parte de la sonda Lambda siempre esta en contacto con el aire de la atmósfera (exterior al tubo de escape), mientras que otra parte de ella lo estará con los gases de escape producidos por la combustión.

Su funcionamiento se basa en dos electrodos de platino, uno en la parte en contacto con el aire y otro en contacto con los gases, separados entre sí por un electrolito de cerámica. Los iones de oxígeno son recolectados por los electrodos (recuerde que cada uno de los electrodos estarán en diferentes lugares, uno al aire atmosférico y otro a los gases de escape), creándose así una diferencia de tensión entre ambos (o una diferencia nula) consistente en una tensión de 0 a 1 volt.

Ante una diferencia de oxígeno entre ambas secciones la sonda produce una tensión eléctrica envíándola a la unidad de control, para que ésta regule la cantidad de combustible a pulverizar.

Fallos típicos

Entre las consecuencias de fallos en las sondas lambda podemos encontrar el encendido del testigo Check Engine, un elevado consumo de combustible, tironeos en la marcha, presencia de carbón en las bujías y humo.

Obviamente estas fallas no son siempre producidas por una falla en la sonda lambda, pero si existe posibilidad que estos síntomas se daban a ellas.

Según el fabricante de la sonda existirán recomendaciones sobre su reemplazo cada ciertos miles de kilómetros, una buena práctica es verificar los gases de escape y testear la sonda lambda cada 20.000 o 30.000 kilómetros.

Recuerde que una sonda lambda en mal estado le pude ocasionar un consumo excesivo de combustible, por lo que es ideal tener la seguridad que la sonda tiene un funcionamiento correcto.

Cables de la sonda Lambda

Las sondas lambda pueden tener diferente cantidad de cables, existiendo de 1, 2, 3 o 4 cables.

Las de 1 solo cable presentan éste de color negro para dar alimentación a la sonda, la masa se logra por la misma carcasa de ésta.

Las sondas de 3 o 4 cables son las que poseen resistencia de caldeo (resistencia calefactora), generalmente en éstas sondas los cables de color blanco son los encargados de la alimentación de la sonda de caldeo con el positivo y la masa.

El cable extra en la lambda de 4 cables corresponde a la masa del sensor de oxígeno y generalmente es de color gris

Sensor Hall del distribuidor

Este sensor es el encargado de proveer información acerca de las revoluciones del motor y posición de los pistones sincronizando así la chispa producidas en las bujías, debiendo para ello como requisito imprescindible la puesta a punto del distribuidor para que se pueda seguir el orden lógico de encendido de las bujías.

Básicamente este sensor permite el pasaje a intervalos alternados de un campo magnético generado por un imán.

Un rotor en movimiento giratorio va impidiendo y permitiendo dejar pasar este campo alternadamente.

Cuando el rotor deja pasar el campo magnético entonces éste es recibido por un generador hall. En estos momentos el generador hall presentara varios volts de tensión, descendiendo a valores inferiores a los 0,7 volts cuando el campo magnético es interrumpido por el rotor.

En la ilustración a la derecha se muestra el rotor girando. A efectos ilutrativos las zonas del rotor que permiten el pasaje del campo magnético han sido pintadas de rojo, mientras que las zonas que lo interrumpen se han pintado de gris.

Las imágenes (de color celeste) generan el campo magnético que es recibido por el sensor hall (color azul).

En el cuadro verde se representa la señal generada por el sensor hall, en un osciloscopio esta señal se observara como una onda de forma cuadrada fluctuando entre los 0 y 12 volts.

Verificación de un sensor hall

Los sensores hall tienen tres terminales para masa, alimentación y la señal entregada.

Su verificación de un sensor es muy sencilla, simplemente se lo alimenta con una tensión de 12 volts y con un tester conectamos el positivo de éste en el terminal correspondiente a la salida de la señal y el negativo a masa verificando así la tensión.

Sensor de detonación


Sen El sensor de detonación se sitúa en el bloque del motor y se trata de un generador de voltaje.

Tiene como objetivo recibir y controlar las vibraciones anormales producidas por el pistoneo, transformando estas oscilaciones en una tensión de corriente que aumentará si la detonación aumenta.

La señal es enviada así al centro de control, que la procesará y reconocerá los fenómenos de detonación realizando las correcciones necesarias para regular el encendido del combustible, pudiendo generar un retardo de hasta 10 grados.

Así este sensor regulará el encendido logrando una mejor combustión lo que brindará al coche más potencia con un consumo menor. Combustibles con un octano mayor permiten que el sistema, en caso de poseer este sensor de detonación, logre un mejor aprovechamiento del combustible evitando la detonación, manteniendo el avance del encendido.

Que es el avance del encendido

El avance de encendido consiste en hacer saltar la chispa de la bujía unos grados antes que el pistón llegue durante su carrera al PMS (Punto Muerto Superior). Esto es útil sobre todo a altas revoluciones del motor donde la velocidad de la llama producida por la ignición del combustible se asemeja a la velocidad promedio del pistón, adelantando unos grados la chispa de la bujía brinda el tiempo necesario para que el proceso de ignición sea realizado en el momento adecuado permitiendo que sea durante el ciclo de expansión donde todo el empuje de la combustión de la mezcla sea ejercido sobre el cilindro.

A más velocidad de giro el motor será necesario un avanzado mayor para un encendido en el momento correcto

Sensor de temperatura del motor


Se sensor de temperatura Su objetivo es conocer la temperatura de motor a partir de la temperatura del líquido refrigerante del mismo, informando a la unidad de control para que regule la mezcla y el momento de encendido del combustible.

El sensor de temperatura del motor se encuentra situada próximo a la conexión de la manguera del agua del radiador.

La falla de este sensor puede causar diferentes problemas como problemas de arranque ya sea con el motor en frío o en caliente y consumo en exceso del combustible.

Puede ocasionar además que el ventilador este continuamente prendido o bien problemas de sobrecalentamiento del motor.

Si desea puede visitar el artículo destinado al diagnóstico de este sensor para conocer como conocer su chequeo y recomendaciones acerca de éste. Era tura del motor

Sensor de temperatura del aire


El sensor de temperatura del aire conocido por IAT por sus siglas en inglés (Intake Air Temperatura) tiene como función, como su nombre la indica, medir la temperatura del aire. Se puede ajustar así la mezcla con mayor precisión, si bien este sensor es de los que tiene menor indecencia en la realización de la mezcla igualmente su mal funcionamiento acarreará fallas en el motor.

Posee una resistencia que aumenta su resistencia proporcionalmente al aumento de la temperatura del aire.

Está situado en el ducto plástico de la admisión del aire, pudiéndose encontrar dentro o fuera del filtro de aire.

Los problemas de este sensor se traducen sobre todo en emisiones de monóxido de carbone demasiado elevadas, problemas para arrancar el coche cuando está frío y un consumo excesivo de combustible. También se manifiesta una aceleración elevada.

Es importante verificar cada 30000 o 40000 kilómetros que no exista óxido en los terminales ya que los falsos contactos de ésta sensor suelen ser uno de los problemas más comunes en ellos.

Sensor de flujo de aire (MAF)


Ubicado entre el filtro de aire y la mariposa la función de este sensor radica en medir la corriente de aire aspirada que ingresa al motor.

Su funcionamiento se basa en una resistencia conocida como hilo caliente, el cual recibe un voltaje constante siendo calentada por éste llegando a una temperatura de aproximadamente 200°C con el motor en funcionamiento.

Esta resistencia se sitúa en la corriente de aire o en un canal de muestreo del flujo de aire.

La resistencia del hilo varía al producirse un enfriamiento provocado por la circulación del aire aspirado.

Actualmente se usan dos tipos de sensores MAF, los análogos que producen un voltaje variable y los digitales que entregan la salida en forma de frecuencia.

Mediante la información que este sensor envía la unidad de control, y tomándose en cuenta además otros factores como son la temperatura y humedad del aire, puede determinar la cantidad de combustible necesaria para las diferentes regímenes de funcionamiento del motor. Así si el aire aspirado es de un volumen reducido la unidad de control reducirá el volumen de combustible inyectado.

miércoles, 28 de octubre de 2009

Sistema de Encendido

Sistemas de encendido


El encendido electrónico sin contactos también llamado "encendido transistor izado"

Con la introducción de la electrónica en los sistemas de encendido convencionales (con "ayuda electrónica") solo faltaba dar un paso y sustituir el sistema mecánico que supone el ruptor, siempre sometido a desgastes y a los inconvenientes debidos al rebote de los contactos a altos regímenes del motor que producen fallos de encendido en el motor. En el encendido convencional mediante bobina, el numero de chispas suministradas esta limitado a unas 18000 por minuto y en el encendido con ayuda electrónica a unas 21000. A partir de aquí sobreviene el consabido rebote de contactos, por lo que estos tipos de encendido, sobre todo en motores de altas prestaciones están limitados. Además el ruptor esta sometido a desgastes en su accionamiento, como es el desgaste de la fibra sobre la que actúa la leva que abre y cierra los contactos. El desgaste de esta pieza implica un desfase del punto de encendido y variación del ángulo Dwell, lo que obliga a reajustar la separación de los contactos periódicamente, con los consiguientes gastos de mantenimiento que ello supone.

La estructura básica de un sistema de encendido electrónico (figura de la derecha), donde se ve que la corriente que atraviesa el primario de la bobina es controlada por un transistor (T), que a su vez esta controlado por un circuito electrónico, cuyos impulsos de mando determinan la conducción o bloqueo del transistor. Un generador de impulsos (G) es capaz de crear señales eléctricas en función de la velocidad de giro del distribuidor que son enviadas al formador de impulsos, donde debidamente conformadas sirven para la señal de mando del transistor de conmutación. El funcionamiento de este circuito consiste en poner la base de transistor de conmutación a masa por medio del circuito electrónico que lo acompaña, entonces el transistor conduce, pasando la corriente del primario de la bobina por la unión emisor-colector del mismo transistor. En el instante en el que uno de los cilindros del motor tenga que recibir la chispa de alta tensión, el generador G crea un impulso de tensión que es enviado al circuito electrónico, el cual lo aplica a la base del transistor, cortando la corriente del primario de la bobina y se genera así en el secundario de la bobina la alta tensión que hace saltar la chispa en la bujía. Pasado este instante, la base del transistor es puesta nuevamente a masa por lo que se repite el ciclo.

Un encendido electrónico esta compuesto básicamente por una etapa de potencia con transistor de conmutación y un circuito electrónico formador y amplificador de impulsos alojados en la centralita de encendido (4), al que se conecta un generador de impulsos situado dentro del distribuidor de encendido (4). El ruptor en el distribuidor es sustituido por un dispositivo estático (generador de impulsos), es decir sin partes mecánicas sujetas a desgaste. El elemento censor detecta el movimiento del eje del distribuidor generando una señal eléctrica capaz de ser utilizada posteriormente para comandar el transistor que pilota el primario de la bobina. Las otras funciones del encendido quedan inmóviles conservando la bobina (2), el distribuidor con su sistema de avance centrífugo y sus correcciones por depresión.

En el encendido electrónico o llamado también transistor izado ha sido utilizado mayoritariamente por los constructores de automóviles debido a su sencillez, prestaciones y fiabilidad. Este tipo de encendido se llama comúnmente "breakerless" utilizando una palabra inglesa que significa sin ruptor.
Teniendo en cuenta el tipo de captador o censor utilizado en el distribuidor se pueden diferenciar dos tipos de encendido electrónico:
- Encendido electrónico con generador de impulsos de inducción. BOSCH lo denomina TZ-I otros fabricantes lo denominan TSZ-I.
- Encendido electrónico con generador Hall. BOSCH lo denomina TZ-H.

El generador de impulsos de inducción
Es uno de los mas utilizados en los sistemas de encendido electrónicos. Esta instalado en la cabeza del distribuidor sustituyendo al ruptor, la señal eléctrica que genera se envía a la unidad electrónica (centralita) que gestiona el corte de la corriente de el bobinado primario de la bobina, para generar la alta tensión que se manda a las bujías.
El generador de impulsos esta constituido por una rueda de aspas llamada "rotor", de acero magnético, que produce durante su rotación una variación del flujo magnético del imán permanente que induce de esta forma una tensión en la bobina que se hace llegar a la unidad electrónica. El imán permanente, el arrollamiento de inducción y el núcleo del generador de inducción componen una unidad constructiva compacta, "el estator". La rueda tiene tantas aspas como cilindros tiene el motor y a medida que se acerca cada una de ellas a la bobina de inducción, la tensión va subiendo cada vez con mas rapidez hasta alcanzar su valor máximo cuando la bobina y el aspa estén frente a frente (+V). Al alejarse el aspa siguiendo el giro, la tensión cambia muy rápidamente y alcanza su valor negativo máximo (-V).
El valor de la tensión (V) depende de la velocidad de giro del motor: aproximadamente 0,5 V a bajas revoluciones y cerca de 10 V a altas revoluciones. En este cambio de tensión se produce el encendido y el impulso así originado en el distribuidor se hace llegar a la unidad electrónica. Cuando las aspas de la rueda no están enfrentadas a la bobina de inducción no se produce el encendido.


Principio de funcionamiento

Como hemos dicho anteriormente el generador de impulsos se encuentra situado en el distribuidor en el mismo lugar en el que se encontraba el ruptor. Exteriormente, solo el cable de dos hilos que se enchufa al distribuidor revela que se trata de un generador de impulsos inductivo. El distribuidor utilizado en este sistema de encendido como en los utilizados en los encendido convencionales, la variación del punto de encendido se obtiene mecánicamente, mediante un dispositivo de avance por fuerza centrifuga y otro por depresión o vacío. Los dispositivos de avance al punto de encendido siempre funcionan desplazando el punto de encendido en sentido de avance. El corrector por depresión realiza una variación suplementaria del punto de encendido. En algunos regímenes de funcionamiento del motor, por ejemplo al ralentí o al régimen de freno motor la combustión de la mezcla es particularmente mala y la concentración de sustancias tóxicas en los gases de escape es entonces más elevada que lo normal. Para mejorar esta combustión, una corrección del encendido en el sentido de retraso será necesaria en muchos casos; esta se realiza mediante un segundo corrector de avance por depresión.

Uno de los tipos de distribuidor utilizado en este sistema de encendido es el que esta compuesto por una rueda de aspas o disparadora (Trigger wheel) que hace de rotor y funciona como la leva de los distribuidores para encendidos convencionales y un generador de impulsos que hace las veces de ruptor y que detecta cada vez que pasa una de los salientes del rotor. El generador de impulsos esta fijado en el plato que era antes porta-ruptor. En la figura se muestra el esquema de esta disposición, donde el imán permanente (1) crea su flujo magnético en el entrehierro (2) que afecta a la bobina (3), de tal forma, que las variaciones del entrehierro producidas con el giro del rotor (4) cada vez que se enfrentan los salientes del rotor, producen variaciones del flujo que afectan a la bobina, creándose en ella impulsos de tensión, que son enviados a la centralita de encendido.
Para ver un esquema completo de un distribuidor (Trigger wheel) pulsa en la figura de la derecha.

Como se ve en distribuidor de la figura (derecha), la estructura del generador de impulsos no tiene mucho que ver con el estudiado anteriormente de forma teórica aunque su principio de funcionamiento sea el mismo. El núcleo ligeramente magnético del arrollamiento inductivo tiene la forma de un disco, llamado "disco polar" (3). El disco polar lleva en su parte exterior el dentado del estator dirigido hacia arriba. Correspondientemente el dentado del rotor (9) esta dirigido hacia abajo.
La rueda generadora de impulsos, comparable a la leva del encendido del ruptor, va montada fija en el eje hueco ("4" figura inferior), el cual rodea el eje del distribuidor ("3" figura inferior). El numero de dientes de la rueda del generador y del disco polar coincide por regla general con el con el numero de cilindros del motor.
Entre los dientes fijos y móviles hay, en oposición directa, una distancia aproximada de 0,5 Mm.

La unidad de control o centralita electrónica de encendido (también llamada "amplificador" en muchos manuales) recibe los impulsos eléctricos que le envía el generador de impulsos desde el distribuidor, esta centralita esta dividida en tres etapas fundamentales como son:
- modulador de impulsos
- mando de ángulo de cierre
- estabilizador
El modulador de impulsos transforma la señal de tensión alterna que le llega del generador de inducción, en una señal de onda cuadrada de longitud e intensidad adecuadas para el gobierno de la corriente primaria y el instante de corte de la misma. Estas magnitudes (longitud e intensidad de impulsos), son independientes de la velocidad de rotación del motor.
El estabilizador tiene la misión de mantener la tensión de alimentación lo mas constante posible. El mando del ángulo de cierre varia la duración de los impulsos de la señal conformada de onda cuadrada en función de la velocidad de rotación del motor.


En la figura superior se muestra la transformación que sufre la señal del generador de inducción una vez que entra en la centralita y como es adecuada en las diferentes etapas de la misma para mas tarde salir y alimentar al primario de la bobina y así provocar el encendido. La tensión alterna que se crea en el generador de impulsos es enviada a la unidad de control (centralita) donde el modulador 2a, que es un circuito electrónico multivibrador, la transforma en una onda cuadrada, adecuada para el gobierno de la corriente primaria. Esta señal de onda cuadrada pasa a continuación al circuito electrónico 2b de mando del ángulo de cierre, que realiza una modificación de la longitud de los impulsos, adaptándolos a la velocidad de rotación del motor para así poder gobernar el ángulo de cierre, es decir, para poder adecuar el tiempo de conducción del primario de la bobina al régimen de giro del motor, de manera que en cualquier condición de funcionamiento, se alcance siempre el valor máximo de la corriente primaria y se obtenga la saturación magnética, lo cual se logra haciendo que el instante de comienzo del paso de corriente por el arrollamiento primario se adelante en el tiempo a medida que aumenta el régimen de giro del motor, en lo que se conoce como ángulo de cierre variable. Seguidamente, la señal pasa a la etapa de excitación 2c, que amplifica los impulsos y los adapta para el gobierno posterior por medio de un transistor Darlington en la etapa de potencia 2d, que es la encargada de cortar o dar paso a la corriente primaria para que se produzca la alta tensión en el secundario de la bobina.
Las unidades de control de estos sistemas de encendido están construidas casi exclusivamente en técnica híbrida, por lo que ofrecen gran densidad de integración con reducido peso y buena fiabilidad.
En algunos sistemas de encendido, la unidad de control se acopla al mismo distribuidor, fijan doce a el mediante tornillos en el exterior de la carcasa como se ve en la figura inferior, lo cual facilita el conexionado del generador de impulsos del distribuidor con la centralita de encendido.


En la figura superior se aprecia el esquema eléctrico de la unidad de control, en el se ven de manera simplificada la etapa de entrada, indicada por tres cuadrados (6a, 6b, 6c), la etapa de amplificación (6d), y la etapa de salida (6e) constituida por un montaje Darlington.

Generador de impulsos de efecto Hall
El otro sistema de encendido electrónico utilizado, es el que dispone como generador de impulsos el llamado de "efecto Hall". El funcionamiento del generador de impulsos de "efecto Hall" se basa en crear una barrera magnética para interrumpirla periódicamente, esto genera una señal eléctrica que se envía a la centralita electrónica que determina el punto de encendido.
En el distribuidor se dispone el generador de efecto Hall que esta compuesto por una tambor obturador (1) de material diamagnético, solidario al eje del distribuidor de encendido, con tantas ranuras como cilindros tenga el motor. El tambor obturador, en su giro, se interpone entre un cristal semiconductor alimentado por corriente continua y un electroimán. Cuando la parte metálica de pantalla (2) se sitúa entre el semiconductor y el electroimán, el campo magnético de este ultimo es desviado y cuando entre ambos se sitúa la ranura del semiconductor, recibe el campo magnético del imán y se genera el "efecto Hall".
Cuando el motor gira, el obturador va abriendo y cerrando el campo magnético Hall generando una señal de onda cuadrada que va directamente al modulo de encendido.
El censor Hall esta alimentado directamente por la unidad de control a una tensión de 7,5 V aproximadamente.

La unidad de control tiene la misión de hacer conducir o interrumpir el paso de corriente por el transistor de potencia o lo que es lo mismo dar paso o cortar la corriente a través del primario de la bobina de encendido; pero además también efectúa otras funciones sobre la señal del primario de la bobina como son:

1.- Limitación de corriente:
Debido a que este tipo de encendidos utilizan una bobina con una resistencia del arrollamiento primario muy bajo (valores inferiores a 1 ohmio) que permite que el tiempo de carga y descarga de la bobina sea muy reducido: pero presentando el inconveniente de que a bajos regímenes la corriente puede llegar hasta 15 A lo cual podría dañar la bobina y la centralita. Para evitar esto la unidad de control incorpora un circuito que se encarga de controlar la intensidad del primario a un máximo de 6 A.

2.- Regulación del tiempo de cierre:
La gran variación de tiempo entre dos chispas sucesivas a altas y bajas revoluciones hace que los tiempos de carga sean a la vez muy dispares produciendo tiempos de saturación de la bobina de encendido excesivos en algunos casos y energía insuficiente en otros.
Para evitar esto el modulo incorpora un circuito de control que actúa en base a la saturación del transistor Darlington para ajustar el tiempo de cierre el régimen del motor.

Como la regulación del ángulo de cierre y la limitación de la corriente dependen directamente de la corriente primaria y del tiempo, se regulan los efectos de las variaciones de tensión de la batería y los de la temperatura u otras tolerancias de la bobina de encendido. Esto hace que este sistema de encendido sea especialmente adecuado para los arranques en frío. Puesto que, debido a la forma del señal Hall puede fluir corriente primaria estando parado el motor y conectado el conmutador de encendido y arranque, las unidades de control están dotadas de una conexión adicional capaz de desconectar después de algún tiempo esa "corriente de reposo".
Las unidades de control utilizadas en este tipo de encendido al igual que las utilizadas en encendido con generador inductivo están construidos en técnica híbrida. Esto permite agrupar en un solo elemento por ejemplo la bobina de encendido y la unidad de control o la unidad de control junto con el distribuidor. Debido a la potencia de perdida que aparece en la unidad de control y la bobina de encendido, es necesaria una refrigeración suficiente y un buen contacto térmico con la carrocería. La unidad de control de este sistema de encendido es similar al del generador de impulsos de inducción. La figura inferior muestra su esquema eléctrico de conexiones, donde se aprecia que dispone de tres etapas funcionales: la de potencia (6c) que incluye el transistor Darlington que comanda el primario de la bobina de encendido, la etapa moduladora y amplificadora (6b) de los impulsos y la etapa estabilizadora (6a) de la tensión.
El generador de impulsos se conecta en este caso con la unidad de control por medio de tres hilos conductores (como se ve en el esquema de la figura), que permiten alimentar de corriente el circuito Hall (bornes + y -) y transmitir las señales de mando a la unidad de control (borne o).


En la figura inferior se presenta un esquema de encendido electrónico por transistores. Consta de tres etapas que vienen determinadas por los bloques de captación de impulsos, de preamplificación y de
amplificación de potencia. Su funcionamiento es el siguiente:
Cuando la rueda generadora de impulsos se encuentra en posición neutra, sin alimentar la base de T1, ocurre que el transistor de potencia (T4) está pasante ya que la corriente le llega a través de la resistencia R1 y le proporciona polarización positiva de base, con lo que la corriente principal lo atraviesa desde +BAT a masa dando una buena alimentación al arrollamiento primario de la bobina de encendido. Por otra parte, en el circuito preamplificador, la entrada de corriente por la línea positiva +BAT alimenta la base del transistor T2 a través de las resistencias R2 y R3. Esta polarización positiva de la base permite el paso de la corriente desde R4 y R6 a masa. En estas condiciones el condensador C1 se carga pero permanece inactivo mientras no haya cambio en el flujo de la corriente principal de T2.
Cuando se percibe una señal procedente de la sonda del generador de impulsos que circula hacia la base del transistor T1, polarizándolo positivamente a través de la resistencia R8, este transistor se vuelve conductor y acapara el paso de la corriente desde R2 hasta R5; la base de T2 se queda sin corriente y T2 sebloquea. Esta situación se hace sensible en C1, el cual sufre una descarga positiva que alimenta la base de T3. Ello establece el paso de la corriente desde R1 a -BAT de modo que la base de T4 se queda ahora polarizada negativamente. Como consecuencia de ello se bloquea T4 y la corriente que alimentaba el arrollamiento primario de la bobina se queda sin corriente. Es el momento de la inducción y del inmediato salto de la chispa en la bujía. Cuando el impulso de base del transistor T1 cesa, se vuelve a la situación inicial y la bobina vuelve a tener masa a través del transistor T4. Este ciclo se reproduce constantemente durante el estado de funcionamiento del dispositivo.
En el segundo esquema inferior tenemos otro tipo de esquema para encendido electrónico.